Kenmotsu Metric as Conformal $$\eta $$-Ricci Soliton
نویسندگان
چکیده
The object of the present paper is to characterize class Kenmotsu manifolds which admits conformal $$\eta $$ -Ricci soliton. Here, we have investigated nature soliton within framework manifolds. It shown that an -Einstein manifold admitting Einstein one. Moving further, considered gradient on and established a relation between potential vector field Reeb field. Next, it proved under certain condition, generalized D-conformal deformation remains invariant. Finally, constructed example for existence manifold.
منابع مشابه
Eta-Ricci solitons on para-Kenmotsu manifolds
In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...
متن کاملSasakian Metric as a Ricci Soliton and Related Results
We prove the following results: (i) A Sasakian metric as a nontrivial Ricci soliton is null η-Einstein, and expanding. Such a characterization permits to identify the Sasakian metric on the Heisenberg group H as an explicit example of (non-trivial) Ricci soliton of such type. (ii) If an ηEinstein contact metric manifold M has a vector field V leaving the structure tensor and the scalar curvatur...
متن کاملOn Φ-ricci Symmetric Kenmotsu Manifolds
The present paper deals with the study of φ-Ricci symmetric Kenmotsu manifolds. An example of a three-dimensional φ-Ricci symmetric Kenmotsu manifold is constructed for illustration. AMS Mathematics Subject Classification (2000): 53C25
متن کاملAlmost Kenmotsu 3-h-manifolds with cyclic-parallel Ricci tensor
In this paper, we prove that the Ricci tensor of an almost Kenmotsu 3-h-manifold is cyclic-parallel if and only if it is parallel and hence, the manifold is locally isometric to either the hyperbolic space H3(−1) or the Riemannian product H2(−4)× R. c ©2016 All rights reserved.
متن کاملEta Invariant and Conformal Cobordism
In this note we study the problem of conformally flat structures bounding conformally flat structures and show that the eta invariants give obstructions. These lead us to the definition of an Abelian group, the conformal cobordism group, which classifies the conformally flat structures according to whether they bound conformally flat structures in a conformally invariant way. The eta invariant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2023
ISSN: ['1660-5454', '1660-5446']
DOI: https://doi.org/10.1007/s00009-023-02396-0